Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.656
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166928, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38660915

RESUMO

Huntington's disease (HD) is a progressive neurodegenerative disorder with clinical presentations of moderate to severe cognitive, motor, and psychiatric disturbances. HD is caused by the trinucleotide repeat expansion of CAG of the huntingtin (HTT) gene. The mutant HTT protein containing pathological polyglutamine (polyQ) extension is prone to misfolding and aggregation in the brain. It has previously been observed that copper and iron concentrations are increased in the striata of post-mortem human HD brains. Although it has been shown that the accumulation of mutant HTT protein can interact with copper, the underlying HD progressive phenotypes due to copper overload remains elusive. Here, in a Drosophila model of HD, we showed that copper induces dose-dependent aggregational toxicity and enhancement of Htt-induced neurodegeneration. Specifically, we found that copper increases mutant Htt aggregation, enhances the accumulation of Thioflavin S positive ß-amyloid structures within Htt aggregates, and consequently alters autophagy in the brain. Administration of copper chelator D-penicillamine (DPA) through feeding significantly decreases ß-amyloid aggregates in the HD pathological model. These findings reveal a direct role of copper in potentiating mutant Htt protein-induced aggregational toxicity, and further indicate the potential impact of environmental copper exposure in the disease onset and progression of HD.


Assuntos
Cobre , Modelos Animais de Doenças , Proteína Huntingtina , Doença de Huntington , Animais , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Cobre/metabolismo , Cobre/toxicidade , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Mutação , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Autofagia/efeitos dos fármacos , Autofagia/genética , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética
2.
Methods Mol Biol ; 2754: 105-116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512663

RESUMO

Tau aggregates are considered a pathological hallmark of Alzheimer's disease. The screening of molecules against Tau aggregation is a novel strategy for Alzheimer's disease. The photo-excited molecules have proven to be effective as a therapeutic agent in several diseases. In recent studies, the photo-excited dyes showed an inhibitory effect on Alzheimer's disease-related Tau protein aggregation and toxicity. The present chapter deals with the effect of rose bengal on the aggregation of Tau. The in vitro studies carried out with the help of electron microscopy, ThS fluorescence, and circular dichroism suggested that RB attenuated the Tau aggregation under in vitro conditions, whereas PE-RB disaggregated the mature Tau fibrils. Photo-excited rose bengal and the classical rose bengal induced a low degree of toxicity in cells. Thus, for the treatment of Alzheimer's disease, the rose bengal could be considered a potential molecule.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Agregados Proteicos , Rosa Bengala/farmacologia , Rosa Bengala/uso terapêutico , Corantes , Proteínas tau/metabolismo , Microscopia Eletrônica , Agregação Patológica de Proteínas/metabolismo
3.
J Biol Chem ; 300(3): 105667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272228

RESUMO

The aggregation of α-Synuclein (α-Syn) into amyloid fibrils is the hallmark of Parkinson's disease. Under stress or other pathological conditions, the accumulation of α-Syn oligomers is the main contributor to the cytotoxicity. A potential approach for treating Parkinson's disease involves preventing the accumulation of these α-Syn oligomers. In this study, we present a novel mechanism involving a conserved group of disorderly proteins known as small EDRK-rich factor (SERF), which promotes the aggregation of α-Syn through a cophase separation process. Using diverse methods like confocal microscopy, fluorescence recovery after photobleaching assays, solution-state NMR spectroscopy, and Western blot, we determined that the N-terminal domain of SERF1a plays a role in the interactions that occur during cophase separation. Within these droplets, α-Syn undergoes a gradual transformation from solid condensates to amyloid fibrils, while SERF1a is excluded from the condensates and dissolves into the solution. Notably, in vivo experiments show that SERF1a cophase separation with α-Syn significantly reduces the deposition of α-Syn oligomers and decreases its cellular toxicity under stress. These findings suggest that SERF1a accelerates the conversion of α-Syn from highly toxic oligomers to less toxic fibrils through cophase separation, thereby mitigating the biological damage of α-Syn aggregation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/química , Doença de Parkinson/metabolismo , 60422 , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Fatores de Transcrição , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Células HeLa , Eletricidade Estática
4.
Int J Biol Macromol ; 255: 128311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992927

RESUMO

The treatment of Parkinson's disease is a global medical challenge. α-Synuclein (α-Syn) is the causative protein in Parkinson's disease and is closely linked to its progression. Therefore, inhibiting the pathological aggregation of α-Syn and its neurotoxicity is essential for the treatment of Parkinson's disease. In this study, α-Syn and recombinant human HspB5-ACD structural domain protein (AHspB5) were produced using the BL21(DE3) E. coli prokaryotic expression system, and then the role and mechanism of AHspB5 in inhibiting the pathological aggregation of α-Syn and its neurotoxicity were investigated. As a result, we expressed α-Syn and AHspB5 proteins and characterised the proteins. In vitro experiments showed that AHspB5 could inhibit the formation of α-Syn oligomers and fibrils; in cellular experiments, AHspB5 could prevent α-Syn-induced neuronal cell dysfunction, oxidative stress damage and apoptosis, and its mechanism of action was related to the TH-DA pathway and mitochondria-dependent apoptotic pathway; in animal experiments, AHspB5 could inhibit behavioural abnormalities, oxidative stress damage and loss of dopaminergic neurons. In conclusion, this work is expected to elucidate the mechanism and biological effects of AHspB5 on the pathological aggregation of α-Syn, providing a new pathway for the treatment of Parkinson's disease and laying the foundation for recombinant AHspB5.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Escherichia coli/metabolismo , Neurônios Dopaminérgicos , Apoptose , Agregação Patológica de Proteínas/metabolismo
5.
J Biomol Struct Dyn ; 42(1): 483-494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36961221

RESUMO

Parkinson's disorder (PD) exacerbates neuronal degeneration of motor nerves, thereby effectuating uncoordinated movements and tremors. Aberrant alpha-synuclein (α-syn) is culpable of triggering PD, wherein cytotoxic amyloid aggregates of α-syn get deposited in motor neurons to instigate neuro-degeneration. Amyloid aggregates, typically rich in beta sheets are cardinal targets to mitigate their neurotoxic effects. In this analysis, owing to their interaction specificity, we formulated an efficacious tripeptide out of the aggregation-prone region of α-syn protein. With the help of a proficient computational pipeline, systematic peptide shortening and an adept molecular simulation platform, we formulated a tripeptide, VAV from α-syn structure based hexapeptide KISVRV. Indeed, the VAV tripeptide was able to effectively mitigate the α-syn amyloid fibrils' dynamic rate of beta-sheet formation. Additional trajectory analyses of the VAV- α-syn complex indicated that, upon its dynamic interaction, VAV efficiently altered the distinct pathogenic structural dynamics of α-syn, further advocating its potential in alleviating aberrant α-syn's amyloidogenic proclivities. Consistent findings from various computational analyses have led us to surmise that VAV could potentially re-alter the pathogenic conformational orientation of α-syn, essential to mitigate its cytotoxicity. Hence, VAV tripeptide could be an efficacious therapeutic candidate to efficiently ameliorate aberrant α-syn amyloid mediated neurotoxicity, eventually attenuating the nocuous effects of PD.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/tratamento farmacológico , Amiloide/química , Computadores
6.
Langmuir ; 39(51): 18923-18934, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079396

RESUMO

Alzheimer's disease (AD) is related to the fibrillation of the Aß peptides at neuronal membranes, a process that depends on the lipid composition and may impart different physical states to the membrane. In the present work, we study the properties of the Aß peptide when mixed with a zwitterionic lipid (DMPC), using the Langmuir monolayer technique as an approach to control membrane physical conditions. First, we build on previous characterizations of pure Aß monolayers and observe that, in addition to high shear, these films present a pronounced compressional hysteresis. When Aß is assembled with DMPC in a binary film, the resulting membranes become heterogeneous, with a peptide-enriched phase distributed in a network-like pattern, and they exhibit a lateral transition that depends on the Aß content. At lower peptide proportions, the films segregate into two well-defined phases: one consisting of lipids and another enriched with peptides. The reflectivity of these phases differs from that obtained for pure Aß films. Thus, the formed fibers effectively cover most of the interface area and remain stable at higher pressures (from 20 to 30 mN m-1 depending on Aß content) compared to pure peptide films (17 mN m-1). Furthermore, such structures induce a compressional hysteresis in the film, similar to that of pure peptide films (which is nonexistent in the pure lipid monolayer), even at low peptide proportions. We claim that the mechanical properties at the interface are governed by the size of the fibril-like structures. Based on the low molar fractions and surface packing at which these phenomena were observed, we postulate that as a consequence of peptide intermolecular interactions, Aß may have drastic effects on the molecular arrangement and mechanical properties of a lipid membrane.


Assuntos
Peptídeos beta-Amiloides , Fenômenos Mecânicos , Lipídeos de Membrana , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Lipídeos de Membrana/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Microscopia Eletrônica de Varredura , Agregação Patológica de Proteínas/patologia , Humanos
8.
Cell Rep ; 42(10): 113244, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838947

RESUMO

Anomalous aggregation of α-synuclein (α-Syn) is a pathological hallmark of many degenerative synucleinopathies including Lewy body dementia (LBD) and Parkinson's disease (PD). Despite its strong link to disease, the precise molecular mechanisms that link α-Syn aggregation to neurodegeneration have yet to be elucidated. Here, we find that elevated α-Syn leads to an increase in the plasma membrane (PM) phosphoinositide PI(4,5)P2, which precipitates α-Syn aggregation and drives toxic increases in mitochondrial Ca2+ and reactive oxygen species leading to neuronal death. Upstream of this toxic signaling pathway is PIP5K1γ, whose abundance and localization is enhanced at the PM by α-Syn-dependent increases in ARF6. Selective inhibition of PIP5K1γ or knockout of ARF6 in neurons rescues α-Syn aggregation and cellular phenotypes of toxicity. Collectively, our data suggest that modulation of phosphoinositide metabolism may be a therapeutic target to slow neurodegeneration for PD and other related neurodegenerative disorders.


Assuntos
Doença de Parkinson , Fosfatidilinositol 4,5-Difosfato , Fosfotransferases (Aceptor do Grupo Álcool) , Agregação Patológica de Proteínas , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Neurônios/metabolismo , Doença de Parkinson/patologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Agregação Patológica de Proteínas/metabolismo , Transdução de Sinais , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
9.
Curr Opin Struct Biol ; 82: 102678, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37604044

RESUMO

Neurodegenerative diseases are associated with the pathological deposition of many different intrinsically disordered proteins or proteins with intrinsically disordered regions. Recent evidence suggests that these proteins can undergo liquid-liquid phase separation and also form membrane-less organelles in cells. Additionally, the biomolecular condensates formed by these proteins may undergo liquid-to-solid phase transition thereby maturating to amyloid fibrils, oligomeric species, or amorphous aggregates and contributing to the pathology of several neurodegenerative diseases. Here we discuss the role of phase separation of the neuronal proteins tau, α-synuclein, fused in sarcoma (FUS), and the transactive response DNA-binding protein of 43 kDa (TDP-43) that are associated with neurodegeneration in the context of pathological protein aggregation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Agregação Patológica de Proteínas , Humanos , Transição de Fase
10.
Proc Natl Acad Sci U S A ; 120(33): e2301366120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549257

RESUMO

A wide range of macromolecules can undergo phase separation, forming biomolecular condensates in living cells. These membraneless organelles are typically highly dynamic, formed reversibly, and carry out essential functions in biological systems. Crucially, however, a further liquid-to-solid transition of the condensates can lead to irreversible pathological aggregation and cellular dysfunction associated with the onset and development of neurodegenerative diseases. Despite the importance of this liquid-to-solid transition of proteins, the mechanism by which it is initiated in normally functional condensates is unknown. Here we show, by measuring the changes in structure, dynamics, and mechanics in time and space, that single-component FUS condensates do not uniformly convert to a solid gel, but rather that liquid and gel phases coexist simultaneously within the same condensate, resulting in highly inhomogeneous structures. Furthermore, our results show that this transition originates at the interface between the condensate and the dilute continuous phase, and once initiated, the gelation process propagates toward the center of the condensate. To probe such spatially inhomogeneous rheology during condensate aging, we use a combination of established micropipette aspiration experiments together with two optical techniques, spatial dynamic mapping and reflective confocal dynamic speckle microscopy. These results reveal the importance of the spatiotemporal dimension of the liquid-to-solid transition and highlight the interface of biomolecular condensates as a critical element in driving pathological protein aggregation.


Assuntos
Condensados Biomoleculares , Agregação Patológica de Proteínas , Humanos , Microscopia Confocal , Reologia , Proteína FUS de Ligação a RNA
11.
Science ; 381(6656): eadd6696, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37499037

RESUMO

Aggregation of tau into filamentous inclusions underlies Alzheimer's disease (AD) and numerous other neurodegenerative tauopathies. The pathogenesis of tauopathies remains unclear, which impedes the development of disease-modifying treatments. Here, by systematically analyzing human tripartite motif (TRIM) proteins, we identified a few TRIMs that could potently inhibit tau aggregation. Among them, TRIM11 was markedly down-regulated in AD brains. TRIM11 promoted the proteasomal degradation of mutant tau as well as superfluous normal tau. It also enhanced tau solubility by acting as both a molecular chaperone to prevent tau misfolding and a disaggregase to dissolve preformed tau fibrils. TRIM11 maintained the connectivity and viability of neurons. Intracranial delivery of TRIM11 through adeno-associated viruses ameliorated pathology, neuroinflammation, and cognitive impairments in multiple animal models of tauopathies. These results suggest that TRIM11 down-regulation contributes to the pathogenesis of tauopathies and that restoring TRIM11 expression may represent an effective therapeutic strategy.


Assuntos
Agregação Patológica de Proteínas , Tauopatias , Animais , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Nat Commun ; 14(1): 3939, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402718

RESUMO

Tau protein fibrillization is implicated in the pathogenesis of several neurodegenerative diseases collectively known as Tauopathies. For decades, investigating Tau fibrillization in vitro has required the addition of polyanions or other co-factors to induce its misfolding and aggregation, with heparin being the most commonly used. However, heparin-induced Tau fibrils exhibit high morphological heterogeneity and a striking structural divergence from Tau fibrils isolated from Tauopathies patients' brains at ultra- and macro-structural levels. To address these limitations, we developed a quick, cheap, and effective method for producing completely co-factor-free fibrils from all full-length Tau isoforms and mixtures thereof. We show that Tau fibrils generated using this ClearTau method - ClearTau fibrils - exhibit amyloid-like features, possess seeding activity in biosensor cells and hiPSC-derived neurons, retain RNA-binding capacity, and have morphological properties and structures more reminiscent of the properties of the brain-derived Tau fibrils. We present the proof-of-concept implementation of the ClearTau platform for screening Tau aggregation-modifying compounds. We demonstrate that these advances open opportunities to investigate the pathophysiology of disease-relevant Tau aggregates and will facilitate the development of Tau pathology-targeting and modifying therapies and PET tracers that can distinguish between different Tauopathies.


Assuntos
Agregação Patológica de Proteínas , Proteínas tau , Proteínas tau/química , Heparina/química , Humanos , Linhagem Celular , Técnicas Biossensoriais , Células-Tronco Pluripotentes , Neurônios , Isoformas de Proteínas , Microscopia Crioeletrônica
13.
J Virol ; 97(4): e0042523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37039659

RESUMO

Enterovirus D68 (EV-D68), which causes severe respiratory diseases and irreversible central nervous system damage, has become a serious public health problem worldwide. However, the mechanisms by which EV-D68 exerts neurotoxicity remain unclear. Thus, we aimed to analyze the effects of EV-D68 infection on the cleavage, subcellular translocation, and pathogenic aggregation of TAR DNA-binding protein 43 kDa (TDP-43) in respiratory or neural cells. The results showed that EV-D68-encoded proteases 2A and 3C induced TDP-43 translocation and cleavage, respectively. Specifically, 3C cleaved residue 327Q of TDP-43. The 3C-mediated cleaved TDP-43 fragments had substantially decreased protein solubility compared with the wild-type TDP-43. Hence, 3C activity promoted TDP-43 aggregation, which exerted cytotoxicity to diverse human cells, including glioblastoma T98G cells. The effects of commercially available antiviral drugs on 3C-mediated TDP-43 cleavage were screened, and the results revealed lopinavir as a potent inhibitor of EV-D68 3C protease. Overall, these results suggested TDP-43 as a conserved host target of EV-D68 3C. This study is the first to provide evidence on the involvement of TDP-43 dysregulation in EV-D68 pathogenesis. IMPORTANCE Over the past decade, the incidence of enterovirus D68 (EV-D68) infection has increased worldwide. EV-D68 infection can cause different respiratory symptoms and severe neurological complications, including acute flaccid myelitis. Thus, elucidating the mechanisms underlying EV-D68 toxicity is important to develop novel methods to prevent EV-D68 infection-associated diseases. This study shows that EV-D68 infection triggers the translocalization, cleavage, and aggregation of TDP-43, an intracellular protein closely related to degenerative neurological disorders. The viral protease 3C decreased TDP-43 solubility, thereby exerting cytotoxicity to host cells, including human glioblastoma cells. Thus, counteracting 3C activity is an effective strategy to relieve EV-D68-triggered cell death. Cytoplasmic aggregation of TDP-43 is a hallmark of degenerative diseases, contributing to neural cell damage and central nervous system (CNS) disorders. The findings of this study on EV-D68-induced TDP-43 formation extend our understanding of virus-mediated cytotoxicity and the potential risks of TDP-43 dysfunction-related cognitive impairment and neurological symptoms in infected patients.


Assuntos
Proteínas de Ligação a DNA , Infecções por Enterovirus , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/farmacologia , Enterovirus Humano D , Infecções por Enterovirus/fisiopatologia , Infecções por Enterovirus/virologia , Linhagem Celular Tumoral , Proteases Virais 3C/metabolismo , Agregação Patológica de Proteínas/genética , Lopinavir/farmacologia , Proteólise/efeitos dos fármacos , Inativação Gênica , Inibidores de Proteases/farmacologia
14.
J Biol Chem ; 299(6): 104722, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075845

RESUMO

Aggregation of tau is one of the major pathogenic events in Alzheimer's disease and several other neurodegenerative disorders. Recent reports demonstrated that tau can condense into liquid droplets that undergo time-dependent transition to a solid-like state, suggesting that liquid condensates may be on the pathway to pathological aggregation of tau. While hyperphosphorylation is a key feature of tau isolated from brains of patients with Alzheimer's disease and other tauopathies, the mechanistic role of phosphorylation in tau liquid-liquid phase separation (LLPS) remains largely unexplored. In an attempt to bridge this gap, here we performed systematic studies by introducing phosphomimetic substitutions of Ser/Thr residues with negatively charged Asp/Glu residues in different regions of the protein. Our data indicate that the phosphorylation patterns that increase the polarization of charge distribution in full-length tau (tau441) promote protein LLPS, whereas those that decrease charge polarization have an opposite effect. Overall, this study further supports the notion that tau LLPS is driven by attractive intermolecular electrostatic interactions between the oppositely charged domains. We also show that the phosphomimetic tau variants with low intrinsic propensity for LLPS can be efficiently recruited to droplets formed by the variants with high LLPS propensity. Furthermore, the present data demonstrate that phosphomimetic substitutions have a major effect on time-dependent material properties of tau droplets, generally slowing down their aging. The latter effect is most dramatic for the tau variant with substitutions within the repeat domain, which correlates with the decreased fibrillation rate of this variant.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/química , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo
15.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047286

RESUMO

The self-association of amylogenic proteins to the fibril form is considered a pivotal factor in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). PD causes unintended or uncontrollable movements in its common symptoms. α-synuclein is the major cause of PD development and thus has been the main target of numerous studies to suppress and sequester its expression or effectively degrade it. Nonetheless, to date, there are no efficient and proven ways to prevent pathological protein aggregation. Recent investigations proposed applying an external electric field to interrupt the fibrils. This method is a non-invasive approach that has a certain benefit over others. We performed molecular dynamics (MD) simulations by applying an electric field on highly toxic fibrils of α-synuclein to gain a molecular-level insight into fibril disruption mechanisms. The results revealed that the applied external electric field induces substantial changes in the conformation of the α-synuclein fibrils. Furthermore, we show the threshold value for electric field strength required to completely disrupt the α-synuclein fibrils by opening the hydrophobic core of the fibril. Thus, our findings might serve as a valuable foundation to better understand molecular-level mechanisms of the α-synuclein fibrils disaggregation process under an applied external electric field.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Simulação de Dinâmica Molecular , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/complicações , Amiloide/metabolismo
16.
Bioorg Med Chem Lett ; 86: 129257, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36966976

RESUMO

The formation of aggregates due to protein misfolding is encountered in various neurodegenerative diseases. α-Synuclein (α-Syn) aggregation is linked to Parkinson's disease (PD). It is one of the most prevalent neurodegenerative disorders after Alzheimer's disease. Aggregation of α-Syn is associated with Lewy body formation and degeneration of the dopaminergic neurons in the brain. These are the pathological hallmarks of PD progression. α-Syn aggregates in a multi-step process. The native unstructured α-Syn monomers combine to form oligomers, followed by amyloid fibrils, and finally Lewy bodies. Recent evidence suggests that α-Syn oligomerization and fibrils formation play major roles in PD development. α-Syn oligomeric species is the main contributor to neurotoxicity. Therefore, the detection of α-Syn oligomers and fibrils has drawn significant attention for potential diagnostic and therapeutic development. In this regard, the fluorescence strategy has become the most popular approach for following the protein aggregation process. Thioflavin T (ThT) is the most frequently used probe for monitoring amyloid kinetics. Unfortunately, it suffers from several significant drawbacks including the inability to detect neurotoxic oligomers. Researchers developed several small molecule-based advanced fluorescent probes compared to ThT for the detection/monitoring of α-Syn aggregates states. These are summarized here.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Corantes Fluorescentes , Doença de Parkinson/metabolismo , Agregados Proteicos/fisiologia , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Agregação Patológica de Proteínas/metabolismo
17.
Cell ; 186(4): 693-714, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36803602

RESUMO

Decades of research have identified genetic factors and biochemical pathways involved in neurodegenerative diseases (NDDs). We present evidence for the following eight hallmarks of NDD: pathological protein aggregation, synaptic and neuronal network dysfunction, aberrant proteostasis, cytoskeletal abnormalities, altered energy homeostasis, DNA and RNA defects, inflammation, and neuronal cell death. We describe the hallmarks, their biomarkers, and their interactions as a framework to study NDDs using a holistic approach. The framework can serve as a basis for defining pathogenic mechanisms, categorizing different NDDs based on their primary hallmarks, stratifying patients within a specific NDD, and designing multi-targeted, personalized therapies to effectively halt NDDs.


Assuntos
Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/patologia , Proteostase , Agregação Patológica de Proteínas/metabolismo , Morte Celular , Citoesqueleto/metabolismo
18.
J Phys Chem B ; 127(9): 1880-1889, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36812408

RESUMO

Protein self-assembly into aggregates of various morphologies is a ubiquitous phenomenon in physical chemistry and biophysics. The critical role of amyloid assemblies in the development of diseases, neurodegenerative diseases especially, highlights the importance of understanding the mechanistic picture of the self-assembly process. The translation of this knowledge to the development of efficient preventions and treatments for diseases requires designing experiments at conditions mimicking those in vivo. This Perspective reviews data satisfying two major requirements: membrane environment and physiologically low concentrations of proteins. Recent progress in experiments and computational modeling resulted in a novel model for the amyloid aggregation process at the membrane-liquid interface. The self-assembly under such conditions has a number of critical features, further understanding of which can lead to the development of efficient preventive means and treatments for Alzheimer's and other devastating neurodegenerative disorders.


Assuntos
Amiloide , Doenças Neurodegenerativas , Humanos , Amiloide/metabolismo , Proteínas Amiloidogênicas , Doenças Neurodegenerativas/metabolismo , Simulação por Computador , Agregação Patológica de Proteínas , Peptídeos beta-Amiloides/metabolismo
19.
J Biol Chem ; 299(3): 102926, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682493

RESUMO

Soluble amyloid-ß oligomers (AßOs) are proposed to instigate and mediate the pathology of Alzheimer's disease, but the mechanisms involved are not clear. In this study, we reported that AßOs can undergo liquid-liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AßOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AßOs to induce their LLPS. Moreover, we found that the droplet formation of AßOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AßOs. Finally, we observed that LLPS of AßOs can further promote Aß to form amyloid fibrils, which can be modulated by (-)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Transição de Fase , Agregação Patológica de Proteínas , Humanos , Doença de Alzheimer/fisiopatologia , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Dodecilsulfato de Sódio/química , Agregação Patológica de Proteínas/fisiopatologia
20.
J Biol Chem ; 299(3): 102941, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702251

RESUMO

Glutamine synthetase (GS), which catalyzes the ATP-dependent synthesis of L-glutamine from L-glutamate and ammonia, is a ubiquitous and conserved enzyme that plays a pivotal role in nitrogen metabolism across all life domains. In vertebrates, GS is highly expressed in astrocytes, where its activity sustains the glutamate-glutamine cycle at glutamatergic synapses and is thus essential for maintaining brain homeostasis. In fact, decreased GS levels or activity have been associated with neurodegenerative diseases, with these alterations attributed to oxidative post-translational modifications of the protein, in particular tyrosine nitration. In this study, we expressed and purified human GS (HsGS) and performed an in-depth analysis of its oxidative inactivation by peroxynitrite (ONOO-) in vitro. We found that ONOO- exposure led to a dose-dependent loss of HsGS activity, the oxidation of cysteine, methionine, and tyrosine residues and also the nitration of tryptophan and tyrosine residues. Peptide mapping by LC-MS/MS through combined H216O/H218O trypsin digestion identified up to 10 tyrosine nitration sites and five types of dityrosine cross-links; these modifications were further scrutinized by structural analysis. Tyrosine residues 171, 185, 269, 283, and 336 were the main nitration targets; however, tyrosine-to-phenylalanine HsGS mutants revealed that their sole nitration was not responsible for enzyme inactivation. In addition, we observed that ONOO- induced HsGS aggregation and activity loss. Thiol oxidation was a key modification to elicit aggregation, as it was also induced by hydrogen peroxide treatment. Taken together, our results indicate that multiple oxidative events at various sites are responsible for the inactivation and aggregation of human GS.


Assuntos
Glutamato-Amônia Ligase , Ácido Peroxinitroso , Processamento de Proteína Pós-Traducional , Humanos , Cromatografia Líquida , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Ácido Peroxinitroso/química , Ácido Peroxinitroso/farmacologia , Espectrometria de Massas em Tandem , Tirosina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Oxirredução , Mutação , Agregação Patológica de Proteínas/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...